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Abstract 

In this study, the use of artificial neural network (ANN) based model, multi-

layer perceptron (MLP) network, to compute the transfer capabilities in a 

multi-area power system was explored. The input for the ANN is load status 

and the outputs are the transfer capability among the system areas, voltage 

magnitudes and voltage angles at concerned buses of the areas under 

consideration. The repeated power flow (RPF) method is used in this paper for 

calculating the power transfer capability, voltage magnitudes and voltage 

angles necessary for the generation of input-output patterns for training the 

proposed MLP neural network. Preliminary investigations on a three area 30-

bus system reveal that the proposed model is computationally faster than the 

conventional method. 
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Major Symbols 
Pr = real power interchange between areas k = bus not in receiving area 
Pkm = tie line real power flow (from bus k in sending area to bus m in receiving area) m = bus in receiving area 
Yij, θij = magnitude and angle of ijth element of admittance of matrix Y R = set of buses in receiving area 
Vi, δi = magnitude and angle of voltage at ith bus n = set of all the buses 
Pg, Qg = real and reactive power outputs of generator Pi, Qi = net real and reactive powers at bus i
Sij = apparent power flow through transmission line between bus i and bus j  
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Introduction 

 

Modern power systems are operating closer to their operating limits due to economic 

reasons and operational factors arising out of deregulation [1,2] and open market of 

electricity. Under such stressed conditions, the transfer capability becomes a major concern in 

system operation and planning [3, 4]. Power system transfer capability indicates how much 

inter area power transfers can be increased without compromising system security. Transfer 

capability computations are performed by the system operators to know the ability of the 

system to transfer power among areas within the system, and also by the system planners to 

indicate system’s strength. 

As the operating conditions of an interconnected power network vary continuously in 

real time, the power transfer capability of the network will also vary from instant to instant. 

For this reason, transfer capability and voltage calculations may need to be updated 

periodically for application in the operation of the network. In addition, depending on actual 

network conditions, transfer capabilities can often be different from those determined in the 

off-line studies. The most commonly used algorithms for computing power transfer capability 

are continuation power flow (CPF), optimal power flow (OPF) and repeated power flow 

methods [5, 6]. 

To give fast solutions to complex problems, some of which were hitherto revealed 

intractable by standard computing devices, artificial neural networks have recently been 

applied in different fields of research [7]. Many interesting ANN applications have been 

reported also in power system areas, where they are widely used in load forecasting, unit 

commitment, economic dispatch, security assessment, fault diagnosis and alarm processing 

[8]. Neural computing has attractive features, such as its ability to tackle new problems which 

are hard to define or difficult to solve analytically, its robustness in dealing with incomplete 

or fuzzy data, its processing speed, its flexibility and ease of maintenance. 

In this paper, standard neural network architecture, multi-layer perceptron model for 

the computation of power transfer capabilities and voltages of multi-area power system has 

been proposed. The repeated power flow method, which repeatedly solves power flow 

equations at a succession of points along the specified load/generation increment, is used in 

this work for transfer capability and voltage calculations necessary for the generation of 

input-output patterns for training the proposed artificial neural network. The effectiveness of 
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the ANN based approach is demonstrated on a three area 30-bus system for different loading 

patterns. 

 

Conventional Repeated Power Flow Method 

 

Referring to Fig.1, a simple interconnected power system is divided into three kinds of 

areas: receiving area, sending area and external areas. “Area” may be an individual electric 

system, power pool, control area, sub-regions, etc., which consist of a set of buses. The power 

transfer between two areas is the sum of the real powers flowing on all the lines which 

directly connect one area to the other. 

 
Figure 1. A Simple Interconnected Power System 

The objective is to determine the maximum real power transfers from sending areas to 

receiving areas through the transfer path. In the mathematical formulation of the transfer 

capability computations problem, the following assumptions are made: 

 The base case power flow of the system is feasible and corresponds to a stable operating 

point. 

 The load and generation patterns vary very slowly so that the system transient stability is 

not jeopardized. 

 The system has sufficient damping to keep within steady state stability limit. 

 Bus voltage limits are reached before the system reaches the nose point and loses voltage 

stability. 

The objective function to be optimized is 

 ∑
∉∈

=
RkRm

kmr PP
,

          (1) 
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Subject to the power flow constraints given by 

 
1

cos( )
n

i i j ij ij i j
j

P V V Y θ δ δ
=

= − +∑        (2)  

 
1

sin( )
n

i i j ij ij i j
j

Q V V Y θ δ δ
=

= − − +∑       (3) 

and the operational constraints 

min maxg g gP P P≤ ≤          (4) 

min maxg g gQ Q Q≤ ≤         (5) 

maxij ijS S≤           (6) 

min maxi i iV V V≤ ≤          (7) 

The control variables in this formulation are generator real and reactive power outputs, 

generator voltage settings, phase shifter angles, transformer taps and switching capacitors or 

reactors. The dependent variables are active and reactive power injections at slack bus, 

reactive power injection and bus voltage angle at generator buses. 

The repeated power flow algorithm for the calculation of transfer capability is as 

follows. 

1. Establish and solve the power flow problem for a base case. 

2. Select a transfer case and solve for it. 

3. Step increase in transfer power and solve for power flow problem. 

4. Check for security limit violations of power flow through tie lines. If no violation, go back 

to step 3. 

5. If there is any violation, decrease step size with minimum possible amount to eliminate 

them. This is the power transfer capability for the selected transfer case. 

 

Multi-layer Perceptron Neural Network Model 

 

Artificial neural networks were designed to mimic the characteristics of biological 

neurons in the human brain and nervous system. The network ‘learns’ by adjusting 

interconnections between layers. When the network is adequately trained, it is able to 

generalize relevant output for a set of input data. Learning typically occurs by example 
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through training, where training algorithm iteratively adjust the connection weights 

(synapses). 

 
Figure 2. Proposed MLP Structure with one Hidden Layer 

 

An MLP network consists of three layers: an input layer, an output layer, and one or 

more hidden layers [7]. Fig.2 illustrates a three-layered multi-layer perceptron network 

(MLPN). Each layer is composed of a predefined number of neurons. The neurons in the 

input layer only act as buffers for distributing the input signals xi to neurons in the hidden 

layer. Each neuron j in the hidden layer sums up its input signals x after weighting them with 

the signals of the respective connections wji from the input layer, and computes its output yj as 

a function f of the sum: 

( )j ji iy f w x= ∑          (8) 

where f is the activation function that is necessary to transform the weighted sum of all signals 

impinging onto a neuron. f is usually a sigmoidal or hyperbolic tangent function. The outputs 

of neurons in the output layer are computed similarly. Training a network consists of 

adjusting its weights using a training algorithm. In this paper the Levenberg-Marquardt (LM) 

algorithm [9] is used for training the MLP network. The LM algorithm is basically a Hessian 

based algorithm for nonlinear least square optimization. For neural network training the 

objective function is the error function of the type 

 2

1

1 ( )
2

p
k k

k
e t y

=
= −∑

r
         (9) 

where  yk  is the actual output for the kth pattern and tk  is the desired output. p is the total 

number of training patterns. 
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The steps involved in training a neural network using LM algorithm are as follows: 

i. Present all inputs to the network and compute the corresponding network outputs and 

errors. Compute the mean square error over all inputs as in (9). 

ii. Compute the Jacobian matrix, J(w) where w represents the weights and biases of the 

network. 

iii. Solve the Levenberg-Marquardt weight update equation to obtain Δw. 

iv. Recompute the error using w+Δw. If this new error is smaller than that computed in 

step 1, then reduce the training parameter μ by μ-, let w= w+ Δw, and go back the 

step1. If the error is not reduced, then increase μ by μ+, and go back step 3. 

v. The algorithm is assumed to have converged when the norm of the gradient is less 

than some predetermined value, or when the error has been reduced to some error 

goal. 

The weights are updated according to the following formula: 

 ( ) ( ) ( )1ji ji jiw t w t w t+ = +Δ        (10) 

with 
1

( ) ( ) ( ) ( )T T
jiw J w J w I J w E wμ

−
⎡ ⎤Δ = +⎣ ⎦       (11) 

where E is a vector of size p calculated as 

 1 1 2 2 ...
T

p pE t y t y t y⎡ ⎤= − − −⎣ ⎦        (12) 

where JT(w)J(w) is referred as the Hessian matrix. I is the identity matrix, μ is the learning 

parameter. 

 

Test System and Simulation Results 

 

The proposed MLPN model is applied to a three area 30-bus system, the single line 

diagram of which is given in Fig. 3. The system data is given in appendix. The system is 

arbitrarily divided into three areas with 2 generators in each area. The power transfer 

capabilities between area 2 and area 3 are investigated for different loading conditions 

obtained by varying the active and reactive power loads in the system. The loads are varied 

with uniform power factor in such a way that the new load condition remains with in a range 

of 80 – 120% of the base operating condition of the system under consideration. In this study, 

using the RPF-based algorithm, the transfer capability from area 2 to area 3, bus voltage 

magnitudes and voltage angles in these areas are computed for different loading conditions. 
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This data is then used to train the ANN to provide real time evaluation of transfer capability, 

voltage magnitudes and voltage angles. Once the ANN is trained, the ANN ‘learns’ the 

implicit correlation between the loading patterns and the transfer capability patterns. Next, the 

new loading patterns (which have not been used to train the ANN) would be fed to the 

network and the network would provide the optimal   power   transfer   capability, voltage 

magnitude and voltage angles at its output. The performance of the proposed MLPN method 

is presented in terms of relative error (ε), which is defined as 

100%i i

i

o t
X

t
ε

−
=          (13) 

where ti is the exact value from repeated power flow solutions and oi is the output of ANN. 

 
Figure 3. Three area 30-bus system 

Table I shows the comparison of transfer capabilities from area 2 to area 3 obtained 

with proposed MLPN model against those obtained with the RPF method for different load 

operating conditions. The bus voltage magnitudes and voltage angles, calculated by the two 

methods for the power transfer capability case of area 2 to area 3 for 107.5% base operating 

condition are given in Table II. Fig. 5 and Fig. 6 show graphically the comparison of bus 

voltage magnitudes and voltage angles respectively calculated by the two methods for the 

transfer capability case of area 2 to area 3 for 112.5% base operating condition. From the 

simulation results, it can be seen that the proposed MLPN model is giving the results 
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practically as accurate as that of conventional method. Further, it was observed that the 

proposed network with 16 inputs, 3 outputs and 9 neurons in the hidden layer takes only 0.94 

second for an error goal of 1e-4, while the conventional method takes 2.81 seconds for the 

same computation. 

 
Table 1. Transfer Capability from Area 2 to Area 3: Comparison of RPF and MLPN methods 

Transfer capability, MWLoad Condition 
(%) RPF metho MLPN metho

Relative 
error (%) 

92.5 
97.5 
102.5 
107.5 
112.5 
117.5 

26.4708 
24.5007 
23.1758 
21.5064 
19.8220 
18.1225 

26.4746 
24.5113 
23.1868 
21.5106 
19.8236 
18.1270 

0.0143 
0.0432 
0.0474 
0.0195 
0.0080 
0.0248 

 

Table 2. Voltage Magnitudes and Voltage Angles of Area 2 and Area 3 (107.5% Load 

Condition) 

Bus Voltage magnitude, p.u. Bus Voltage angle, deg. Bus no. RPF method MLPN method  RPF method  MLPN method 
10 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
29 
30 

0.9777 
0.9756 
1.0000 
0.9592 
0.9661 
0.9632 
0.9657 
0.9440 
0.9400 
0.9465 
0.9916 
1.0000 
1.0000 
0.9870 
0.9891 
0.9697 
1.0000 
0.9780 
0.9653 

0.9776 
0.9756 
1.0000 
0.9592 
0.9661 
0.9630 
0.9655 
0.9440 
0.9400 
0.9465 
0.9917 
1.0000 
1.0000 
0.9870 
0.9891 
0.9697 
1.0000 
0.9780 
0.9653 

-4.7099 
-3.5361 
-0.4925 
-4.5277 
-4.5333 
-4.5184 
-4.9607 
-5.7293 
-6.1094 
-5.8632 
-4.7017 
-4.5653 
-3.8722 
-3.9179 
-1.8301 
-2.3150 
-0.2429 
-1.6428 
-2.6284 

-4.7077 
-3.5341 
-0.4905 
-4.5257 
-4.5312 
-4.5163 
-4.9584 
-5.7271 
-6.1071 
-5.8610 
-4.6993 
-4.5628 
-3.8699 
-3.9154 
-1.8272 
-2.3120 
-0.2398 
-1.6321 
-2.6248 
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Conclusions 

 
In this paper, an artificial neural network model, multi-layer perceptron network has 

been developed for the computation of the power transfer capability among various areas and 

voltage magnitudes and voltage angles of the concerned buses of those areas in an 

interconnected system, accurately and rapidly for any loading conditions. Repeated power 

flow based transfer capability computation algorithm is utilized in generating the input-output 

patterns required for training the proposed ANN model. The preliminary investigations on a 

multi-area system indicate that the proposed model is computationally faster than the 

conventional RPF method and is useful for online applications. 
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Appendix 

30-bus test system data is given below. 

Table A1. Bus Data 

SB EB R (p.u) x (p.u) b (p.u) Line limit (MW)
1 2 0.02 0.06 0.03 130 
1 3 0.05 0.19 0.02 130 
2 4 0.06 0.17 0.02 65 
3 4 0.01 0.04 0.00 130 
2 5 0.05 0.20 0.02 130 
2 6 0.06 0.18 0.02 65 
4 6 0.01 0.04 0.00 90 
5 7 0.05 0.12 0.01 70 
6 7 0.03 0.08 0.01 130 
6 8 0.01 0.04 0.00 32 
6 9 0.00 0.21 0.00 65 
6 10 0.00 0.56 0.00 32 
9 11 0.00 0.21 0.00 65 
9 10 0.00 0.11 0.00 65 
4 12 0.00 0.26 0.00 65 
12 13 0.00 0.14 0.00 65 
12 14 0.12 0.26 0.00 32 
12 15 0.07 0.13 0.00 32 
12 16 0.09 0.20 0.00 32 
14 15 0.22 0.20 0.00 16 
16 17 0.08 0.19 0.00 16 
15 18 0.11 0.22 0.00 16 
18 19 0.06 0.13 0.00 16 
19 20 0.03 0.07 0.00 32 
10 20 0.09 0.21 0.00 32 
10 17 0.03 0.08 0.00 32 
10 21 0.03 0.07 0.00 32 
10 22 0.07 0.15 0.00 32 
21 22 0.01 0.02 0.00 32 
15 23 0.10 0.20 0.00 16  

Table A2. Load Data 

Bus No. Pd (MW) Qd (MVAR) 
2 21.7 12.7 
3 2.4 1.2 
4 7.6 1.6 
7 22.8 10.9 
8 30.0 30.0 

10 5.8 2.0 
12 11.2 7.5 
14 6.2 1.6 
15 8.2 2.5 
16 3.5 1.8 
17 9.0 5.8 
18 3.2 0.9 
19 9.5 3.4 
20 2.2 0.7 
21 17.5 11.2 
23 3.2 1.6 
24 8.7 6.7 
26 3.5 2.3 
29 2.4 0.9 
30 10.6 1.9  

 

Table A3. Generator Data 

Bus 
No. 

Pg 
(MW) 

Qg 
(MVAR) 

Qmax 
(MVAR) 

Qmin 
(MVAR) 

Vg 
(p.u) 

Pmax 
(MW) 

Pmin 
(MW) 

1 23.54 0.00 150.0 -20.0 1 80 0 
2 60.97 0.00 60.0 -20.0 1 80 0 

22 21.59 0.00 62.5 -15.0 1 50 0 
27 26.91 0.00 48.7 -15.0 1 55 0 
23 19.20 0.00 40.0 -10.0 1 30 0 
13 37.00 0.00 44.7 -15.0 1 40 0 

 


