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Abstract 

The paper presents a novel neural network based system for processing 

thermocouple signals, performing the tasks of linearization of the sensor 

transfer curve and cold junction compensation in the same stride. Keeping an 

eye on the viability of the complete system as a commercial product, a 

thermistor has been considered for sensing the reference junction temperature. 

Cost of the remaining hardware is also minimal. With the use of versatile 

Differential Evolution (DE) algorithm during the training of a multilayered 

Artificial Neural Network (ANN) to initialize the weight and biases of the 

ANN, it has been possible to achieve remarkably low measurement errors, as 

revealed by the simulation studies. 

Keywords 
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Introduction 

 
Accurate measurement of temperature is one of the most common and vital 

requirements in industrial instrumentation. It is also one of the most difficult objectives to 

achieve. Unless proper temperature measuring techniques are employed, serious inaccuracies 
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of reading can occur, or may result in useless data. For this purpose, several instruments have 

been devised to measure temperature correctly and the well-known of them is the mercury 

thermometer. Current interest ranges from cryogenics (a few Kelvin) to plasma (10,000 K 

upwards). However, most applications are in the range of room temperature to 2000 K [1]. 

The thermocouple is by far the most widely used temperature sensor for industrial 

instrumentation. Its favourable characteristics include good inherent accuracy, suitability over 

a broad temperature range, relatively fast thermal response, ruggedness, high reliability, low 

cost (except for the noble metal thermocouples), and great versatility of application in the 

sense that the thermocouple group of sensors can be optimized for a variety of environmental 

conditions. The main limitation is accuracy; as system errors of less than 1°C may be difficult 

to achieve [1-5]. In most cases, sensor outputs are nonlinearly related to the physical variables 

they sense, and thermocouples are no exception. They also generate voltage signals that are 

nonlinearly related to temperature being measured. For solving this problem the sensor output 

requires correction. Another important issue in the processing of thermoelectric signals is the 

cold junction compensation (CJC), which calls for maintaining the reference junction 

temperature at 0ºC or simulating a similar condition by electronic or other methods [3-5,11]. 

While many of the generalized hardware and software based linearization techniques can also 

be used for thermocouples, some have been specifically applied for this class of sensors [7-9]. 

In those works, the reference junction has been assumed to be held at a constant temperature 

of 0ºC. Several development works on cold junction compensation have also been reported [5, 

10, 11]. Commercially available hardware modules, e.g. SCM7B47 from DATAFORTH, 

which perform both cold junction compensation and linearization for different types of 

thermocouples, are also available. Obviously for such systems, with a change in the type of 

thermocouple used, the module also has to be replaced. 

In this work, an artificial neural network (ANN) was proposed as a tool to linearize the 

characteristics of different thermocouples. 

 

 

Material and Method 

 

The ANN is fitted to the calibrating data with a desired final error. In this work we 

have used evolutionary algorithm based Differential Evolution (DE) algorithm for ANN 
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training. Thus the weights and biases of the network are initialized with DE and thereafter this 

initialized network is again retrained with the help of Levenberg-Marquadt algorithm. 

Provision for cold junction compensation (CJC) is also integrated with the ANN linearizer 

and uses the data related to the reference junction temperature from a circuit employing a 

thermistor with negative temperature coefficient (NTC). It is worth mentioning that 

linearization of thermocouple characteristics by using ANN is nothing new, but the novelty of 

the present work lies in the fact that it presents an ANN based technique that serves the dual 

purpose of linearization and cold junction compensation. 

The proposed scheme has been tested by MATLAB based simulation using the 

manufacturer’s data for J and K type thermocouples having decent linearity and also for G 

type thermocouple whose characteristic is the most nonlinear and non-monotonic as well. 

 

An Overview of Linearization and Cold Junction Compensation Techniques  

Linearization of sensor characteristic plays a vital role in electronic instrumentation 

because all sensors have outputs nonlinearly related to the physical variables they sense. If the 

sensor output is nonlinear, it will produce a whole assortment of problems [5, 6, 10]. A 

variety of analog circuits are used for sensor linearization [13], which implies additional 

analog hardware and the typical problems associated with analog circuits (e.g. error due to 

temperature drift). If the system includes a microprocessor or a computer, we can cope with 

the sensor non-linearity by means of arithmetic operations, if a reasonably accurate sensor 

model is available. Another possibility is the use of a look-up table, which may require a 

considerable amount of memory for enhanced accuracy, resulting in a problem in small 

microprocessor systems or microcontrollers. 

The conceptually simplest way of cold junction compensation is to keep the reference 

junction of the thermocouple immersed in a carefully constructed ice bath (i.e. at 0ºC) and the 

voltage measuring device can be comfortably calibrated in terms of the sensing junction 

temperature. However maintenance of the ice bath in industrial environment being a problem, 

people look for alternatives. One approach is to use two temperature controlled ovens 

maintained at two different temperatures to simulate the effect of a 0ºC reference junction 

temperature. Principle of the electronic methods in current use is to employ an auxiliary 

sensor for sensing the reference junction temperature, and the sensor output is electronically 

processed to generate an appropriate voltage which is combined with the thermocouple output 
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to yield a cold junction compensated output. In more sophisticated systems, a voltage related 

with the reference junction temperature is developed by a sensor as stated above and this 

voltage and the thermocouple output are processed by software with an appropriate numerical 

algorithm to yield the temperature being measured. Thus, the software performs the task of 

linearization and cold junction compensation in the same stride. The scheme presented in this 

paper is a variant of this approach. The procedure utilizes a simple multi-layered ANN as in 

[8, 12]. 

 

An Improved Scheme for Simultaneous Linearization and Cold Junction 

Compensation 

The proposed measurement scheme is shown in figure 1. As evident from the figure, 

in this proposed scheme the reference junction of the thermocouple is at the ambient 

temperature Ta. This ambient temperature may vary and usually not at 0°C. So the NTC 

thermistor arrangement will serve the purpose of an extra sensor to sense the ambient 

temperature. 

The thermistor is placed in series with a known constant resistance. The series circuit 

is fed from a constant voltage source (Vi). The voltage drop across the constant resistance (r) 

is measured. As temperature increases, the resistance of the thermistor (RT) decreases. So the 

circuit current and the voltage drop across the resistance r will increase. 

It is easily understood that this voltage is a function of ambient temperature. Therefore 

this voltage Eo(Ta) can be utilized for cold junction compensation. The thermocouple output 

voltage is V0 (Td), where Td = TS – Ta, TS being the temperature under measurement. 

The voltage V0(Td) and E0(Ta) are captured by a computer based data acquisition 

system, where they are digitized and then processed by a neural algorithm. It is intended that 

the neural network will predict the temperature TS under measurement from the values of V0 

and E0 (which depends on the cold junction temperature) as inputs and T0  as the target. On 

completion of the training, the ANN linearizer is ready to calculate TS from the measured 

values of V0 and E0. 

The expression for the thermistor circuit voltage, as evident from figure 1, is given by: 
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Figure 1. Proposed Measurement Scheme 

 

This arrangement has an added advantage that it provides a series linearizing scheme 

for the thermistor. To utilize the linearizing action of the series resistance the value of r is 

judiciously chosen. This reduces the task of the ANN linearizer to a certain extent. The well-

known expression for the value of linearizing series resistance is [13]: 
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Here, we have considered the approximate characteristic equation of the thermistor 

given by: 
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where: RT = resistance of thermistor at temperature T in Kelvin;  RT0 = Resistance of 

thermistor at temperature T0 in Kelvin; β = a constant between 1500K to 7000K depending 

upon the type of thermistor; TM = midpoint of the temperature range over which the 

thermistor is to be used; RTM = resistance of thermistor at temperature TM in Kelvin. 

The value of β is obtained from the equation given below by the method of least 

squares as: 
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where: RTi = thermistor resistance at Ti Kelvin and n = number of data points considered. 
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The constant input voltage (Vi) is determined considering the heat dissipation 

capability of the thermistor package. As the transfer characteristics of the thermocouples and 

the resistance-temperature characteristic of a NTC thermistor are both nonlinear, the 

importance of a linearizing scheme for this proposed arrangement is immense. 

 

The ANN Signal Processor 

Artificial neural networks (ANN) are processing elements based on the principle of 

work of human brain [14, 15]. An ANN consists of a set of artificial neurons (processing 

units), and their connections (which are so called weights and biases). ANN learns, i.e adjusts 

its weights and biases, from input-output data called examples. As ANNs are model-free 

estimators, it is not necessary to presume a model function that relates the input-output data 

pairs. Artificial neural networks are extensively useful in a wide spectrum of applications 

such as signal and image processing, pattern recognition [16], control systems [17] and 

instrumentation also [18]. As ANNs possess nonlinear characteristics, they are very useful in 

solving complex and nonlinear problems. They provide better and more accurate results as 

compared to linear techniques. Among the various applications of ANNs, Hofer et al [19] 

have envisaged a neural network that can successfully control the strip thickness of a steel 

rolling mill. In power systems also [17] an adaptive variable structure voltage regulator is 

implemented using an artificial neural network. 

In the present case, a multi-layered (2-15-1) feed forward neural network has been 

considered (as shown in figure 2). It has input layer with two input node, a hidden layer ANN 

with twenty nodes and output layer with two nodes. Each hidden node multiplies every input 

by its weight and sums the product and then passes the sum through the sigmoid function. The 

outputs from the output layer of the neural network are compared to the target value of the 

training data function to calculate the error. Differential Evolution (DE) algorithm has been 

used for initializing the weights and biases of the ANN [20-22], and thereafter this initialized 

network is again trained with the help of Levenberg-Marquadt algorithm [23-25]. 
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Figure 2. Structure of Artificial Neural Network  

 

 

Results and Discussion 

 

The simulation and testing of the scheme has been carried out using SIMULINK and 

Neural Network Toolbox of MATLAB 6.5 in a Pentium 4 processor based PC. UUA 33J4 

thermistor of Omega Engineering has been considered as cold junction temperature sensor 

and its resistance-temperature data obtained from the manufacturer [26] have been utilized for 

simulation. 

During training of the ANN, 100 epochs (iterations) have been used for initialization 

of the weights and biases of the network by DE algorithm and the initialized network is then 

trained using 350 epochs (iterations) with Levenberg-Marquadt algorithm. A new program 

TRAINDE.m has been used to implement the DE algorithm for training the ANN, and 

conventional MATLAB function trainlm is used for training the ANN using Levenberg-

Marquadt algorithm. 

The ambient temperature has been considered to vary from 0ºC to 50ºC. Hence 

TM=25ºC. For the thermistor under consideration, RTo=3000Ω at reference temperature 

T0=298K. The value of β has been obtained from equation (4) as 3961.8K, by considering 51 

data points (i.e. n=51), 1°C apart, over the temperature range of interest. Since the heat 

dissipation capability of the thermistor package is 0.1 mWatt, a safe value of the supply 

voltage Vi is taken as 1 volt. To utilize the linearizing action of the series resistance, the value 

of r is chosen as 2516.92Ω, as obtained from equation (2). 

The percentage full scale (FS) error for each type of the thermocouple has been 
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calculated. These results are shown in tables 1-4, as well as in figure 3-10). As G 

thermocouple has a unique non monotonic characteristic, performance of the scheme has been 

evaluated for two different ranges of operations (0–2300ºC and 250–2300ºC) for this 

thermocouple. The extremely low value of errors proves the effectiveness of the scheme. 

 

Table 1. Percentage Full-scale Error for K Thermocouple for Different Ambient Temperature  

Thermocouple 
Type 

Measured 
Temperature 
Range (oC) 

Ambient 
Temp. 
(oC) 

Max. Error 
(+ve) (% FS) 

Max. Error 
(-ve) (%FS) 

RMS Error 
(%FS) 

0 0.00042 0.00036 0.000009 
10 0.00057 0.00064 0.000065 
20 0.00046 0.00056 0.000087 
30 0.00033 0.00028 0.000029 
40 0.00025 0.00049 0.000057 

K 0 - 400 

50 0.00034 0.00046 0.000066 
 

Since type K thermocouple has a transfer curve with quite good linearity, its entire 

application range has not been considered. As expected, the proposed scheme has been found 

to work brilliantly for this thermocouple. 

 

Table 2. Percentage Full-scale Error for J Thermocouple for Different Ambient Temperature 

Thermocouple 
Type 

Measured 
Temperature 
Range (oC) 

Ambient 
Temp. 
(oC) 

Max. Error 
(+ve) (% FS) 

Max. Error 
(-ve) (%FS) 

RMS Error 
(%FS) 

0 0.000035 0.000021 0.0000037 
10 0.000041 0.000050 0.0000043 
20 0.000033 0.000038 0.0000013 
30 0.000039 0.000022 0.0000011 
40 0.000027 0.000024 0.0000082 

J 0 - 750 

50 0.000011 0.000045 0.0000041 
 

For J type thermocouple, whose transfer curve is less linear, the error reported in 

literature is ± 0.29% over OºC to 300ºC. The prediction error obtained with the present 

scheme is within ± 0.45 × 10-4 % over 0ºC to 750ºC which is indeed a remarkable feat to 

achieve. 

For the G type thermocouple, it has been reported by various researchers that over 

250ºC to 2150ºC, the RMS errors are obtained as 2.11ºC, 1.27ºC, 1.06ºC with linear 

interpolation, quadratic interpolation and an ANN method respectively. In the present work, 
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over a similar range of temperature, the maximum RMS error is obtained as 0.000046% of 

full scale, which corresponds to 0.0011°C. Even for wider range (i.e. 0°C to 2300°C) the 

maximum RMS error is 0.00087% of full scale, i.e. 0.002°C. This achievement of the 

proposed scheme can be considered to be really exceptional, considering the non-monotonic 

transfer curve of the thermocouple which makes the transducer less amenable to linearization. 

 

Table 3. Percentage Full-scale Error for G Thermocouple (in the range 0-2300oC) for 

Different Ambient Temperature 

Thermocouple 
Type 

Measured 
Temperature 
Range (oC) 

Ambient 
Temp. 
(oC) 

Max. Error 
(+ve) (% FS) 

Max. Error 
(-ve) (%FS) 

RMS Error 
(%FS) 

0 0.00125 0.00030 0.000067 
10 0.00087 0.00054 0.000063 
20 0.00037 0.00037 0.000087 
30 0.00041 0.00026 0.000022 
40 0.00045 0.00039 0.000060 

G 0 - 2300 

50 0.00022 0.00055 0.000047 
 

Table 4. Percentage Full-scale Error for G Thermocouple (in the range 250oC - 2300oC) for 

Different Ambient Temperature 

Thermocouple 
Type 

Measured 
Temperature 
Range (oC) 

Ambient 
Temp. 
(oC) 

Max. Error 
(+ve) (% FS) 

Max. Error 
(-ve) (%FS) 

RMS Error 
(%FS) 

0 0.00031 0.00049 0.0000270 
10 0.00028 0.00044 0.0000220 
20 0.00033 0.00054 0.0000460 
30 0.00042 0.00046 0.0000433 
40 0.00024 0.00036 0.0000410 

G 250 - 2300 

50 0.00024 0.00048 0.0000213 
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Figure 3. %FS Error variation for G thermocouple with change in Measured Temperature 

(Ts) for different Ambient Temperature (Ta) [for the range 0°C–2300°C for Ts] 
 

 
Figure 4. %FS Error variation for G thermocouple with change in Measured Temperature 

(Ts) for different Ambient Temperature (Ta) [for the range 250°C–2300°C for Ts] 

 



 

Leonardo Electronic Journal of Practices and Technologies

ISSN 1583-1078 

 Issue 19, July-December 2011 

p. 13-28 
 

23 

 
Figure 5. %FS Error variation for G thermocouple with varying Ambient Temperature (Ta) 

for different values of Measured Temperature (Ts) [in the range of 0°C– 2300°C] 

 

 
Figure 6. %FS Error variation for G thermocouple with varying Ambient Temperature (Ta) 

for different values of Measured Temperature (Ts) [in the range of 250°C– 2300°C] 
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Figure 7. %FS Error variation for K thermocouple with change in Measured Temperature 

(Ts) for different Ambient Temperatures (Ta) 

 

 
Figure 8. %FS Error variation for K thermocouple with varying Ambient Temperature (Ta) 

for different values of Measured Temperature (Ts) 
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Figure 9. %FS Error variation for J thermocouple with change in Measured Temperature 

(Ts) for different Ambient Temperature (Ta) 

 

 
Figure 10. %FS Error variation for J thermocouple with varying Ambient Temperature (Ta) 

for different values of Measured Temperature (Ts) 
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Conclusions 

 

An ANN based signal conditioning arrangement has been devised for thermocouples, 

which performs the dual task of compensating the transfer-curve nonlinearity as well as the 

error due to drift in the temperature of the reference junction. The weights and biases of the 

neural network have been optimized by a versatile evolutionary algorithm. The performance 

of the system as assessed by simulation is superb. It is by far superior to those schemes 

developed earlier. It is worth mentioning that these earlier thermocouple signal processing 

arrangements were meant to serve as linearizers only and conventional hardware methods 

were considered for CJC. 

An attractive feature of the present scheme is the use of a very low-cost sensor 

(thermistor) for sensing the reference junction temperature. It is also to be noted that if the 

thermocouple type is changed due to any reason, the system can be adapted for the changed 

situation, simply by retraining the neural network, or at most a change in the structure of the 

network has to be introduced. 

When visualized as a compact commercial product, the system will consist of the 

thermistor, the associated electronic circuitry and a microcontroller based system 

programmed with the ANN software. With the rapid development of ANN chips, such ICs 

can also be utilized. 
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