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Abstract 

The focus of this work is to present a finite element method (FEM)-based 

program of the M-E design on MATLAB protocol. The response output 

generated at critical locations are presented. The results were then compared 

with those from a locally available program called ‘NEMPADS’ and a 

reasonable comparison were achieved. 
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Introduction 

Accurate pavement performance prediction is widely recognized by pavement 

community as one of the most important and difficult task to pursue. Proper selection of 

pavement materials and layers thicknesses can be optimized based upon performance–based 

specifications. The basic requirement for this is the availability of accurate pavement 

performance prediction methodology [1]. 

The state-of-the-art in flexible pavement design is manifested in mechanistic-based 

design methods in that it incorporates the treatment of life-cycle costs and design reliability in 

their design procedures. These techniques use pavement response in terms of stresses and 

strains as a major causative factors affecting pavement performance, which are directly 
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related to the pavement layer material properties [2]. 

M-E method of flexible pavement design is an emerging technology for design which 

contains a number of distress models, mainly fatigue cracking and rutting, which are used to 

determine the design life of pavement [3]. With the current state of knowledge, the estimation 

of stresses and strains can be estimated by theory of elasticity for linear analysis and is termed 

as Layered Elastic Analysis (LEA) [4]. This analysis may or may not be accurate since in 

actual situation, most of the paving materials, especially the unbound material, behaves non-

linearly under load and thus cannot be properly characterized by linear analysis. Several 

techniques have been used in the past to characterize non-linear nature of the unbound 

material; however the most common of these techniques is the Finite Element Method (FEM). 

With Finite Element Analysis, it is possible to treat non-linear elastic materials through an 

iterative process. Because of the complex mathematical computational nature of this analysis, 

limited number of programs, based on this methodology had been developed in the past for 

characterizing the non-linear behaviour of pavement layers. Other programs in this category 

are Finite Difference Methods, e.g. FLAC, etc., Boundary Element Methods, e.g. BEASY, 

etc. Examples of Finite Element Programs are MICH-PAVE and ILLI-PAVE. With the 

advent of the fast computers and reduced processing times, finite element analysis is 

becoming more popular [5]. 

The research is aimed at developing a pavement performance response model best 

suited to Nigerian environment to predict, to an acceptable degree of accuracy, the distresses, 

namely – stresses, strains and deformations in flexible. This is because most Mechanistic-

Empirical softwares are developed adaptable to specific environments or conditions of the 

location of their designers. Among the leading examples are ILLI-PAVE (University of 

Illinois), DSC2D (University of Arizona), DYNA (Livermore Software Technology 

Corporation), JULEA (Jacob Uzea Layered Elastic Analysis) etc and hence, the reason to 

have ABU-PAVE (Ahmadu Bello University, Zaria, Nigeria) which is adapted to Nigerian 

environment. 

 
 

Material and Method 

 

Finite Element Method 

Finite element method is based on discrete element idealization. The domain of the 
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problem is subdivided into sub-domains of which pavement layers are an example. These sub-

domains are discredited into a number of finite-sized elements. These finite elements are 

subsequently interconnected by nodes at their common edges and assembly of all these 

elements will represent the problem for general analysis [6, 13]. 

In many phases of engineering, the solution of stress and strain distribution in elastic 

continua is required. Special cases of problems may range from 2-D plane stress or strain 

distribution, axisymmetrical solids, plate bending, and shell, to fully 3-D solids. In all cases 

the number of interconnections between any ‘finite element’ isolated by some imaginary 

boundaries and the neighbouring elements is infinite. It is therefore difficult to see how such 

problems may be discredited. However, the difficulty can be overcome (and approximation 

made) in the following manner [6]: 

• The continuum is separated by imaginary lines or surfaces into a number of ‘finite 

elements’. 

• The elements are assumed to be interconnected at a discrete number of nodal points 

situated on their boundaries; the displacements of these nodal points will be the basic 

unknown parameters of the problem. 

• A set of functions is chosen to define uniquely the state of displacement within each 

‘finite element’ in terms of its nodal displacements. 

• The displacement functions now define uniquely the state of strain within an element in 

terms of nodal displacements; these strains, together with any initial strains and 

constitutive properties of the material will define the state of the stress throughout the 

element and, hence, also on its boundaries.  

• A system of stress concentrated at the nodes and equilibrating the boundary stresses 

and distributed loads is determined resulting in stiffness relationship of the form shown 

below: 

{F}a = [K]a{δ}a + {F}a
p + {F}a

s0 (1)

where: {F}a
p = nodal forces required to balance any distributed load acting on the element, 

{F}a
s0= nodal forces required to balance any initial strains such as may be caused by 

temperature change if the nodes are not subjected to any displacement. The first term 

represents the forces induced by displacement of the nodes. 

 Following these, four general FEM procedures are applied: 

1. Determination of elements properties from the geometric material and loading data: 
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for each element, the stiffness matrix and the corresponding nodal loads are found 

from the equation (1.0) above. 

2. Assembly of final equations of the type given below: 

[K]{δ} = {R} – {F}p – {F}s0 (2)

1. Insertion of prescribed boundary conditions into the final assembled matrix. 

2. Solving the resulting equation system. 

Clearly, a series of approximations has been introduced. Firstly, it is not always easy 

to ensure that the chosen displacement functions will satisfy the requirement of displacement 

continuity between adjacent elements. Thus, the compatibility conditions on such lines may 

be violated (though within each element it is obviously satisfied due to uniqueness of 

displacements implied in their continuous representation). Secondly, by concentrating the 

equivalent forces at the nodes, equilibrium conditions are satisfied in overall sense only. 

Local violation of equilibrium conditions within each element and on its boundaries will 

usually arise.  

In general, the finite element procedures can analyse the non-linear pavement systems 

more realistically than other structural models by considering the variation of modulus within 

each layer. The stress-dependent properties in the form of resilient modulus MR and the 

failure criteria for granular materials and fine-grained soils were incorporated in this 

methodology. The principal stresses in the granular and/or subgrade layer are modified at the 

end of each iteration in a way whereby they do not exceed the strength of the materials, as 

defined by the Mohr-Coulomb failure envelop (12). 

 

Axisymmetric Finite Element Analysis 

(3) Formulates the plane linear isoparametric element which can be revised to obtain 

the axisymmetric element. A typical axisymmetric cross section is shown in Figure 1. The 

global coordinates (radial and vertical), and the corresponding displacements at an internal 

point can be related to the corresponding nodal quantities through shape functions [6-9]: 

}C]{H[
z
r

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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}U]{H[

v
u

=⎟⎟
⎠
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⎝

⎛

 

(3)

where {C}T={r1z1r2z2r3z3r4z4}= nodal coordinates, {U}T={u1v1u2v2u3v3u4v4}= nodal 

displacements. 

The shape function matrix is given as: 
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Figure 1. Typical Axisymmetric Finite Element Shape 

The individual shape functions are: 

H2(ξ, η) = 0.25(1 – ξ)(1 – η) (5)

H2(ξ, η) = 0.25(1 + ξ)(1 – η) (6)

H2(ξ, η) = 0.25(1 + ξ)(1 + η) (7)

H2(ξ, η) = 0.25(1 – ξ)(1 + η) (8)

In order to compute the derivative of this bilinear isoparametric element, we apply 

chain rule. Or simply in matrix form: 
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The components of the Jacobian matrix are computed as shown below: 
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Substitution of bilinear shape functions into the above equations (10-13) yield: 

J11 = H1,ξr1+H2,ξr2+H3,ξr3+H4,ξr4 (14)

There are similar expressions for J12, J21, and J22; where: 

H1,ξ = – 0.25(1 – η) (15)

H1, η = – 0.25(1 – ξ) (16)

The relationships between strain and displacement vectors are: 
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The above strain-displacement relationship is better written in linear form thus: 

{ε} = [B]{U} (18)

Or thus: 
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Where [B] is known as the kinematic matrix. The element stiffness matrix is: 

[Ke] = ∫∫∫v[B]T[D][B]rdrdθdz = ∫∫[B]T[D][B]rdrdz (20)

Or: 

[Ke] = 2π∫-11∫-11[B]T[D][B]r[J]dξdη (21)

Where the matrix of elastic constant (the constitutive matrix) [D] is: 
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where: 
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d = (1 – v)/(1 – 2v); b = v/(1 – 2v) (23)

Equation (21) must be integrated numerically. Using Gauss quadrate in two 

dimensions, the integral of a function Φ (ξ, η) can be expressed as: 

[Ke] = ∫-11∫-11Φ(ξ,η)dξdη – ∑∑WiiWjiΦ(ξ,η) (24)

where Wi and Wj are weights associated with the Gauss-points (ξi,ηj). 

 

Formulation of Edge Loads  

The edge loads applied along the upper edge of an element need to be transformed 

into equivalent nodal load. This is performed by integrating along the surface S thus: 

fs = ∫SHTSdS (25)

where fs is the forces along surface. Changing to natural coordinate, the radial and vertical 

nodal loads can be expressed as: 
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where Pn= normal load; Pt = tangential load. 

In pavement analysis, wheel loads are considered to act vertically and hence Pt = 0. 

Therefore equations (26) and (30) reduce to: 
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Since 0/ =∂∂ ξz  for local and global axes in the same direction (as in this case): 

ξ∂
ξ∂
∂

π= ∫− }rP{Hr2P
1

1 nizi  
(29)

Using Gaussian quadrature, one dimensional integration of a function Φ (ξ) becomes: 

∑ ξΦ=
i

iiz )(WP  (30)

where Wi = the weight associated with the Gauss-point ξi. 

 

Nonlinear Model: The Resilient Modulus 

The resilient modulus (MR) is a measure of the elastic property of a soil recognizing 



Development of Finite Element Response Model for Mechanistic - Empirical Design of Flexible Pavement  

Mujtaba A. AHMED, Hassan S. OTUOZE, and Abdulfatai A. MURANA 
 

76 

certain nonlinear characteristics. It is readily useful in mechanistic analysis for the prediction 

of cracking, rutting etc. [5]. 

In pavement, repeated vehicle loads cause permanent deformations as well as resilient 

(recoverable) deformations. In practice, mechanistic models are used only to compute stresses 

and resilient strain, while permanent (plastic) deformation is empirically related to the 

resilient strains, magnitude of load, number of load applications, material properties, etc. The 

resilient response is characterized by modulus material, which is defined as the ratio of the 

repeated axial deviator stress to the recoverable axial strain. 

For the granular base and sub-base materials, the resilient modulus can be expressed in 

terms of the bulk stress as follows [5]: 

( ) 2K
1r KM θ=  (31)

where: Mr=resilient modulus, θ=bulk stress(σ1+σ2+σ3), K1,K2 = experimental test constants. 

 

The Finite Element Program  

The practical use of finite element analysis is based on matrix algebra and the use of 

electronic computer, because it is only in matrix form that the complete solution process can 

be expresses in a compact and elegant manner [8].  

In general, MATLAB is a useful tool for vector and matrix manipulations. Since the 

majority of the engineering systems are represented by matrix and vector equations, we can 

relieve our workload to a significant extent by using MATLAB [10, 14]. The FEM is a well-

defined candidate for which MATLAB can be very useful as a solution tool, because matrix 

and vector manipulations are essential parts in the method. 

The program developed in this research named ‘ABU-PAVE’, considers the base and 

sub-base materials as nonlinear. The AC and subgrade layers are considered linear. 

The bulk stress is the engine of the nonlinearity of the program in that it varies 

throughout the soil, as obtained experimentally in the laboratory. Typical values for Nigeria 

base and sub-base materials obtained from “Development of Pavement Evaluation Unit and 

Rehabilitation Design Procedure for Nigeria under Phase II of the Trunk Road Study” [11], 

are assumed for the program. 

Axisymmetric finite elements procedure, adopted in ‘ABU-PAVE’ (as used in ILLI-

PAVE and MICH-PAVE) is used to model structural components that is rationally symmetric 

about the axis, e.g., solid rings. If these structures are subjected to axisymmeric loads, a two-



 

Leonardo Electronic Journal of Practices and Technologies

ISSN 1583-1078 

 Issue 19, July-December 2011 

p. 69-84 
 

77 

dimensional analysis of a unit radian of the structure yields the complete stress and strain 

distribution of the system. 

The basic underlying assumptions for the development of ‘ABU-PAVE’ are as 

follows: 

1. A singular circular wheel load is adopted on an axisymetrical rectangular section. 

2. Linear material properties are adopted for asphalt concrete and subgrade layers, and 

non-linear material properties for the unbound base and sub-base layers. 

3. Continuity is assumed between the layers, hence interpolation not necessary. 

4. The weights of the materials are negligible. 

These assumptions are based on the requirement that a basic finite element program is 

to be developed on MATLAB, on personal computers. 

The basic requirements for the generation of the mesh used in this program are how 

far the vertical and bottom boundaries should be located, the size and shape of the elements, 

and the distribution of the elements in different regions.  

From experience, stresses based on quadrilateral elements will be accurate provided 

that the length-to-width ratio for the elements does not exceed five to one. Based on these 

considerations, the following mesh rules were used: the mesh is generated with a full 

traditional finite element depth of 12960 mm, at which rigid boundary is placed and a width 

of 10 tire radii (1360 mm), at which a fixed radial boundary is fixed, are adopted for 

simplicity. The mesh is discredited into 156 rectangular elements of different sizes, with the 

finest elements closest to the load area. A four node-element is adopted totalling 182 nodes. A 

standard wheel load of 9000lb (40 kN) was adopted with tire pressure of 80 psi (552 kPa) and 

radius of 5.35 in (136 mm). 

Four layers are defined: the asphalt concrete, unbound base, sub-base and the 

subgrade, with trial thicknesses of 150 mm, 240 mm, 270 mm and 12300 mm respectively, all 

divided into tree equal sub-layers each. In the radial direction, the total width of 10 radii is 

sub-divided into four zones. The 1st zone between 0 and 1 radius is equally divided into four 

elements; the 2nd zone between 1 radius and 3 radii is equally divided into four elements; the 

3rd zone between 3 radii and 6 radii is equally divided into three elements; finally, the 4th 

zone between 6 radii and 10 radii is equally divided into 2 elements. 

The material properties used for the development of ‘ABU-PAVE’ is shown in Table 

1. The response outputs (displacements and stresses) generated from the program is presented 
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in the graph of Figure 2 through 5. 

 

Table 1. Material Properties used for the ‘ABU-PAVE’ 

Layer 
Type 

Thickness 
(mm) 

Modulus, E 
(MPa) 

Bulk Stress,  
θ, (MPa) 

Poisson’s 
ratio, υ K1(MPa) K2 

AC 150 4830  0.35   
Base 240   0.38   
Subbase 270  210 0.40 50 0.45
Subgrade 12300 193 95 0.45 31 0.53

 

Comparison of ‘ABU-PAVE’ and NEMPADS 

Comparison was made of the generated outputs (stresses, strains and displacements) 

from ‘ABU-PAVE’ and NEMPADS. This was achieved by adopting uniform material 

properties for the two programs, and calling for outputs at same critical locations in the 

pavement section. Vertical components of the output (i.e., vertical stresses, vertical strains 

and vertical displacements), at the bottom of the AC (just before the AC-base interface) and 

on top of the subgrade (just after the sub base-subgrade interface), from the programs were 

chosen for the comparison. 

The material properties used for the NEMPADS are presented in Table 2. The outputs 

generated from the two programs, Table3, obtained at the bottom of AC and on top of 

subgrade (i.e., 149 mm and 661 mm depth respectively), directly under the load centre. 

 

Table 2. Material Properties used for the NEMPADS 

Layer type Thickness 
(mm) 

Modulus, 
E (MPa) 

Poisson’s 
Ratio 

AC 254 4830 0.35 
Base 254 550 0.40 
Subbase 254 550 0.40 
Subgrade 12192     193     0.45 

 

The comparison of the ‘ABU-PAVE’ against NEMPADS shows a reasonable 

comparison generally, as indicated in the table 3. The outputs generated from the ‘ABU-

PAVE’ are generally lower compared to those of the NEMPADS, and the discrepancies are 

more pronounce at depth 149 mm (i.e. at the bottom of the AC), especially for the stress 

values. This is due to the fact that the programs are based on different methodologies (i.e. 

finite element method and multi-linear elastic method) and that AC was treated as linear 
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elastic instead of visco-elastic material. The strain and displacement values from the two 

programs compared reasonably at all levels. 

 

Table 3. Comparison of ‘ABU-PAVE’ and NEMPADS 

PROGRAM ‘ABU-PAVE’ NEMPADS 
Vertical Dept (mm) 149 661 149 661 
Stress (kPa) 12.79 17.41 179.95 21.17 
Strain (mm) 0.42E-3 2.67E-3 3.28E-3 2.72E-3 
Displacement (mm) 0.07E-3 0.03E-3 0.12E-3 0.08E-3 

 

 

Results and Discussion 

 

It can be seen from figure 2 that the maximum deflection (0.0412 mm) occurs at the 

pavement surface directly under the applied wheel load centre, and diminishes rapidly away 

in radial direction in the first zone (since the mesh division is finer in this zone), and gently to 

uniform value toward the end of the section width. This pattern is also the same for the 

vertical displacement plotted against depth directly under the applied wheel load centre 

(figure 3); it can be observed that it exhibits the same maximum value at the pavement 

surface, diminishes rapidly in the first layer (AC layer), and gently from the base layer to zero 

value just above the section full depth. This is related to the properties of the materials (i.e., 

modulus), with AC having the highest modulus and the subgrade lowest. These are compared 

goodly to the exact solution [5]. 

The stresses values tend to display uniformity within each layer. This is due to the fact 

that the layers are not bounded. The radial stress of figure 4 is seen to increase from the 

pavement surface, attain its maximum value at depth 50mm and decreases rapidly within the 

AC to the minimum negative value at the AC – base interface; it then increases gently from 

negative value in the base layer and rapidly in the sub-base layer; and finally reduces gently 

towards zero in the subgrade layer. It can be inferred that the rate of stress change in each 

layer is related to the modulus and thickness of the layer in reverse proportion. 
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Figure 2. Vertical Displacement along the Surface in Radial Direction 
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Figure 3. Vertical Displacement in the Vertical Direction under the Load Center 

 

The vertical stress exhibits the same pattern in the AC layer from the pavement 

surface towards the bottom as the radial stress, but in a reverse direction, as shown in figure 5; 

it then increases to the highest magnitude of the pavement stress value occurring around the 

middle of the base layer, which corresponds to one of the critical locations in the pavement 

section [12, 15], and reduces gently towards zero at the bottom of the subgrade. It can also be 

observed that maximum value at the base layer for both the radial and vertical stresses, occur 



 

Leonardo Electronic Journal of Practices and Technologies

ISSN 1583-1078 

 Issue 19, July-December 2011 

p. 69-84 
 

81 

at the same location, and correspond to the overall maximum value for the section. 
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Figure 4. Radial Stress in the Vertical Direction under the Load Center 
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Figure 5. Vertical Stress in the Vertical Direction under the Load Center 

 

At the critical location in the asphalt concrete layer (i.e., at the bottom), the magnitude 

of the radial stress value, is more than double that of vertical stress value. This conforms to 

what is obtained in a local pavement program ‘NEMPADS’ [12]. 
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Conclusions 

 

The validity of the developed program – ‘ABU-PAVE’ has been benchmarked against 

the local available program – NEMPADS, which gave fair comparison. The discrepancies are 

based on the different methodologies on which the two programs are based. Hence the 

program can conveniently be used for pavement analysis within the limit stipulated in the 

assumptions. 

It can also be inferred that from the analysis that, for a four layered flexible pavement, 

the mechanical characterization of AC layer, as a linear elastic medium, is a reasonable 

approximation of the visco-elastic behavior. 

Therefore, the following are recommended for the program: 

• The nonlinearity of the program should be strictly based on the model’s stress-

dependency, for the base and subbase layers.  

• AC and subgrade layers be treated approximately as linear elastic, but AC may be more 

characterized as visco-elastic. 

• Consideration of continuity between the layers of the pavement section. 

• The constants of the model (K1 and K2) should be strictly based on the materials 

properties. 
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